
Fast Object Distribution (sap 0312)

Andrew Willmott∗

Maxis, Electronic Arts

1 Introduction

On Spore, we have a need to procedurally distribute game objects,
subject to a number of constraints. As a starting point, the objects
should positioned in a way that seems visually random, but be well
spaced, as in a poisson disc distribution. There are other desirable
characteristics, having multiple object types that don’t overlap; nat-
urally varying object scale, orientation and colour; control over the
density of objects from some form of map, be it procedural, game-
generated, or pre-authored. The problem domain is similar to that
of [Ostromoukhov et al. 2004] and related papers, although our per-
formance constraints are tighter.

2 Incremental Halton Sequence

Our solution to this problem is to use an incremental version of
the pseudo-random Halton sequence [Halton 1964] for distributing
points in 2D or 3D. A major advantage for game use is that this is
memoryless: generating a list of samples does not require storage
for tables, or for intermediate data structures necessary to ensure
spacing. (The Halton sequence by nature fills in between previous
samples as the count increases.) Memory access is slow on modern
day PCs and even more so on consoles, so this is key. Moreover,
it is repeatable, so we have the option of not permanently storing
object positions after laying out an area, but simply regenerating
them from scratch each time.

Calculating a point in a standard Halton sequence requires taking
the sequence index, writing it as both base two, three and (for 3D)
five numbers, and then digit reversing those numbers. This opera-
tion is logb (x), and requires performing divides in the inner loop.
While not expensive for offline generation, doing this at run time
for a large number of samples is prohibitive. Thus we reformulated
the sequence as an incremental calculation, which keeps base 3 and
5 versions of the count in binary-coded form as state. The amor-
tized cost of finding the next point in the sequence then becomes a
factor of the expected number of carries in each base on an incre-
ment, which is b/(b− 1), small enough to be fast enough, as the
routine requires only adds, multiplies, and shifts.

3 Varying other Attributes, Composition

Although the sequence Hi meets the positioning criteria mentioned
above, we would like to have the same characteristics for other ar-
eas. A novel way of doing this is to use i/N to index a small ta-
ble for the attribute involved. This has the effect of ensuring that
similarly-coloured objects are maximally distant from each other,
which tends to lead to visually pleasing variation. An example of
this approach vs. purely random variation can be seen in Figure
1. Because table lookups are coupled, it is easy for distribution
to encompass small objects with one colour range and larger ones
with another. We also allow truly random variation of attributes,
however, this has been largely unneeded.

We take this idea further by providing art control over the sequence
range used. This lets several different kinds of objects be distributed
over an area without having to worry about object collisions. For
example, different species of plants may be nested amongst each
other simply by ordering them one after the other.

∗e-mail: awillmott@maxis.com

Figure 1: Left, random variation, right, indexed variation

4 Distribution Density

A straightforward approach to modifying the density of our distri-
bution is rejection sampling. Assume we have some density map
D(x), which is 0..1 over the domain. We generate samples as usual,
but discard any sample such that D(Hi) < i/N. This has the effect
of locally reducing the number of in-fill samples where D is small.
Results can be seen in Figure 2.

This can be wasteful when the integral of D is small. However
because our sample generation is fast, in practice it is usually more
efficient than less brute force methods, especially if D is varying
over time. When a density map is extremely sparse, samples can
be generated more efficiently by subdividing the region into tiles,
and finding the maximum value of D within each tile t. For each
tile, we choose Nt proportional to Dt

max, and then perform rejection
sampling using Dt(x) = D(x)/Dt

max.

A drawback to this approach is that the sample pattern repeats
within tiles. A higher quality approach would be to find an efficient
way to calculate a windowed Halton sequence, i.e., all consecutive
points Hi such that Hi ∈ (s0,s1, t0, t1). This has not so far proved
possible under our performance constraints.

Figure 2: Density control by rejection sampling

References

HALTON, J. H. 1964. Algorithm 247: Radical-inverse quasi-
random point sequence. Commun. ACM 7, 12, 701–702.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast hierarchical importance sampling with blue noise proper-
ties. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, ACM
Press, New York, NY, USA, 488–495.


	Introduction
	Incremental Halton Sequence
	Varying other Attributes, Composition
	Distribution Density

